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Abstract 

   This paper details our construction of a linked employer-employee longitudinal dataset 

of the doctoral workforce that enables researchers to analyze the labor market outcomes of 

STEM PhD graduates and postdocs. The dataset is primarily derived from annual ACS and 

LEHD files held within the secure environment of a Federal Statistical Research Data Center 

(FSRDC). However, since neither the ACS nor LEHD data contain a label for whether an 

individual is or has been employed as a postdoc, we must utilize a recently developed data 

source, UMETRICS, to predict postdoc status for our ACS-LEHD sample. By merging the 

Employee Transactions File of UMETRICS to our ACS-LEHD doctorate dataset, we obtain a 

(UMETRICS) subset of the ACS-LEHD data that does contain such a label. By utilizing 

machine learning algorithms such as random forests trained on the UMETRICS subset of the 

ACS-LEHD doctorate data, we can predict postdoc status for the rest of the ACS-LEHD sample, 

which will then enable us to examine the economic effects of postdoc employment. In this paper, 

we discuss the formation of our ACS-LEHD panel of doctorates, the random forest method used 

for predicting postdoc status, and the diagnostic tests used to evaluate predictive performance. 

The machine learning methods used to augment the ACS-LEHD doctorate sample is general 

enough to be applied by other researchers merging datasets of disparate size.  
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1. Introduction 

 

 If in developed economies economic growth and sustained increases in living standards 

primarily arise from scientific and technological advances, then the state of the STEM workforce 

is of first-order importance. Are our educational institutions producing enough of the right kinds 

of STEM workers? Are these institutions passing over some households due for reasons of 

ethnicity, gender, geography, or income, thus leaving valuable human capital unharnessed? Do 

federal and state policies designed to grow the STEM workforce `work', for example, do they 

produce better jobs, increase innovation rates, increase the tax base, and stimulate local, regional, 

and national economies? What is the value to a student and to society of a STEM graduate 

degree or postgraduate training? Are there enough students in the STEM educational pipeline to 

meet current and future STEM demand? 

  To answer these questions, detailed, comprehensive data are needed that follow persons 

through the educational system into the workforce and beyond. Ideally, such data would contain 

information at the person level about programs of study, the identities of mentors and types and 

amounts of hands-on research, degrees or postgraduate training received, demographic 

characteristics, undergraduate (and earlier) preparation. The data should include employment 

information before and after university training, including salaries, occupations, industry, and 

detailed employer data that includes measures of firm inputs, outputs, and R&D activity. 

  In this paper, we document our first steps towards creating a new database that will 

enable researchers to measure the labor market outcomes of STEM PhD graduates and postdocs: 

what occupations and industries they work in, how much they earn, and how their careers 

develop over time. To prepare STEM students for the world of work, policy-makers, education 

officials, and the students themselves need to know where STEM graduates go, what they do, 

their career paths, how the labor market valuates their skills, and where in the economy their 

skills are most valued. Policy-makers also need appropriate data and models of STEM workforce 

demand to wisely allocate scarce educational resources and forecasts far enough in advance (the 

STEM PhD and postdoc pipeline is decades long) to formulate and implement policies to head 

off STEM shortages or gluts. Our envisioned data set ticks most of the boxes above to track the 

job history of STEM graduates and to investigate their contribution to production that is superior 

to or complements extant data sets for these purposes. Once this new dataset is complete, we 

plan to measure flows of STEM graduates into different sectors of the economy, estimate the 

returns to education for STEM PhDs and postdocs, and analyze the determinants of STEM labor 

demand in industry. Additionally, we will examine how the returns to education for STEM PhDs 

and postdocs vary in different industries and types of firms (e.g. research-intensive industries, 

start-up firms, established firms) and for different groups of workers (e.g. women, minorities). 

We are also interested in investigating the role of STEM workers in creating knowledge 

spillovers from universities to private business and in assessing the complementarity between 

STEM workers and innovation and technological change in industry. We will formulate and 

estimate new models of labor demand based on state-of-the-art econometric methods and 

innovative identification strategies that are made possible by the new, longitudinal data on new 

STEM workers created in this project. 
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  The literature on the career paths of PhD scientists is largely based on two longstanding 

NSF surveys. The NSF’s Survey of Earned Doctorates (SED) is an annual census of students 

earning a doctorate from a U.S. institution. Stephan (2006), for example, uses these data to show 

that only 37 percent of PhDs stay in their state of training, less for PhDs trained in Midwestern 

universities. The NSF’s Survey of Doctorate Recipients (SDR) is a biennial survey of U.S. PhDs 

whose sampling frame is the individuals in the SED. The SDR follows respondents until they are 

76 years of age and is rich in demographic information and information about employment 

activities. This is the most commonly used data set for research that requires documenting or 

analyzing careers of U.S. PhDs as it is the only data set containing a large, representative sample 

of doctorate recipients with long panels (e.g., Fox and Stephan, 2001; Ginther and Kahn, 2009). 

  Many critical issues related to the doctoral workforce cannot be answered with the SDR, 

however. To develop useful models and forecasts of PhD workforce demand, for example, firm-

based data are necessary. There is a long-standing literature on the complementarity between 

technology and skills (e.g., Acemoglu, 1998; Goldin and Katz, 1998; Bresnahan et al., 2002). 

Firm panel data with detailed information on firm inputs and outputs is also necessary to 

evaluate the extent to which STEM workers stimulate the use of new technology. In contrast to 

the SDR, a linked employer-employee dataset of the doctoral workforce would enable 

researchers to investigate how technological change interacts with the utilization of STEM PhDs 

in private business and the determinants of PhD workforce demand. 

  A factor determining the demand for STEM PhDs and postdocs is private business’s 

access to the fruits of university research. More broadly, understanding how knowledge 

spillovers across institutions within economies work is of interest because of the role spillovers 

likely play in both local economic development and national economic growth. Studies in both 

the economics and sociology of innovation literatures argue that new scientific knowledge is 

frequently “tacit” and difficult to transmit to the uninitiated via spoken or written communication 

(Polanyi, 1958, 1966). The most efficient means of transmission across organizational 

boundaries for tacit knowledge may be via person-to-person contact involving a transfer or 

exchange of personnel. Kaiser (2005) argues that the use of Feynman diagrams diffused 

relatively slowly and only through face-to-face interactions between physicists. The literature on 

science and innovation regularly find geographical limitations to the diffusion of ideas (e.g., 

Jaffe, 1989; Jaffe, Henderson, and Trajtenberg,1993; Audretsch and Feldman, 1996; Zucker, 

Darby, and Brewer, 1998; Mowery and Ziedonis, 2001) and these studies are often interpreted as 

evidence of the tacitness of knowledge (e.g., Feldman, 1994). Cohen, Nelson, and Walsh (2000) 

surveyed R&D managers on the means by which they gather and assimilate new technologies 

and find that firms access externally-located technology partly through the hiring of and 

collaboration with researchers from the outside. Moreover, they find that hiring/collaboration 

with outside researchers is complementary to other means of accessing externally produced 

knowledge, such as through informal communications with outsiders and more formal (such as 

consulting) relationships with outsiders. 

  Much of the literature that examines the mobility of scientists and innovators as a source 

of knowledge transmission focuses on the movement of academic scientists from academe to 

industry. Certainly, universities and academic ideas are important to the high-technology sector. 
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A number of studies offer strong evidence for geographically localized spillovers occurring in 

areas around major universities (Jaffe, 1986, 1989; Audretsch and Feldman, 1996; Henderson et 

al., 1998), suggesting both that academe is an important source of commercially-important ideas 

and that such ideas are not easily transmitted from the university labs in which they originate to 

the firms where they can be turned into commercial products. Work by Jensen and Thursby 

(2001), Agrawal and Henderson (2002), and Thursby and Thursby (2002) find that the best 

predictor that an academic idea leads to successful product roll-out is the participation of the 

inventing scientist. Thus, the hands-on involvement of academic scientists may in fact be 

necessary for an academic idea to take root in industry. In the biotechnology sector, Darby and 

Zucker and co-authors have examined the importance of working relationships between firms’ 

bench scientists and top academic, or “star”, scientists. They find that firms in the U.S. and Japan 

are more likely to enter the biotechnology industry in regions where star academics publish 

(Zucker, Darby, and Armstrong, 1998, 2002; Zucker, Darby, and Brewer, 1998; Zucker and 

Darby, 2001). They also find that university influence on nearby firm R&D productivity exists 

almost exclusively in firms whose bench scientists have working relationships with star 

academic scientists. 

  Some of the short-comings of the NSF surveys vis-a-vis investigating demand, 

technological complementarity, and university-trained workforce mediated spillovers are 

addressed by a new research platform developed by the U.S. Census in conjunction with 

prominent U.S. research universities called UMETRICS, which draw on university 

administrative databases to capture data on individuals—students, postdocs, faculty, staff—who 

work on federal and other sponsored research grants (UMETRICS is described in Lane et al., 

2015). The advantage of UMETRICS for answering some of the questions that are out of the 

SDR’s reach is that it can now be linked to Census data on employee jobs, individual 

demographic and socioeconomic characteristics (Buffington et al., 2016), and firms and business 

establishments (Zolas et al., 2015).  

  In this paper, we utilize UMETRICS data linked to both the ACS and LEHD to construct 

a new panel data set of PhD-holders and postdocs that contains detailed demographic 

information, employment information, and employer information, and that will allow researchers 

to track PhDs and postdocs forward and backward relative to their university training. The 

current paper focuses on the development of a machine learning strategy to predicting the 

postdoc status of university employees with PhDs. Since machine learning methods may be 

unfamiliar to many social scientists, we discuss the machine learning model used in this paper, 

random forests, in some detail, as well as the standard diagnostics used to assess the performance 

of these methods.1 In future work, we will utilize this dataset to describe the career trajectories 

we observe in our new data set, formulate and estimate models of STEM PhD and postdoc 

demand, including evaluating the interplay between firm innovativeness and employment of 

STEM PhDs and postdocs, and measure the earnings gains from PhD and postdoc training.  

                                                             
1 Future drafts will also test the quality of our imputation method by comparing the characteristics of predicted 

postdocs with those present in SED and SDR data. 
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  The rest of the paper is organized as follows: In the next section, we discuss recent 

applications of machine learning in economics research and introduce the general idea behind 

our machine learning method used to impute postdoc status. We then discuss how we link 

multiple data sources available in the Census Bureau’s Federal Statistical Research Data Centers 

to create a linked employer-employee dataset of the PhD workforce.  Next, we describe the 

machine learning model, random forests, that we use to form postdoc predictions in our main 

analysis, as well as describe the standard diagnostics used to assess the performance of 

competing predictive models. These methods have been successfully implemented using our 

linked employer-employee dataset of the PhD workforce from within the Census Bureau’s 

Federal Statistical Research Data Centers, but the results of this implementation are pending 

Census disclosure. Therefore, in order to clarify the methods we use to select and assess the 

machine learning model we use for prediction, we show our method applied to a publicly-

available dataset of spam and non-spam emails available through the UC Irvine Machine 

Learning Repository. Since no single machine learning algorithm dominates all others across all 

applications (James, Witten, Hastie, and Tibshirani, 2013), we then develop a method that 

enables us to compare the performance of our random forest model with other models, including 

a rival machine learning model known as boosted trees. Lastly, we conclude with the main 

takaways from our analysis and plans for future work. 

 

2. Machine Learning: An Application to Merging Datasets of Disparate Size 

 Improvements in data storage capacity and computing power have led to the increasing 

proliferation of “big data” and an ever-widespread use of machine-learning techniques that detect 

complex interactions among variables within these data with the aim of optimizing out-of-sample 

predictive performance for key variables of interest. Applications abound: machine learning is 

used in 1) information retrieval tasks such as predicting useful responses to search engine queries 

or the preferences of consumers, 2) speech-recognition software powering virtual assistants such 

as Siri and Alexa, and 3) image-detection technology used in self-driving cars and for face-

recognition. These methods have not only gained favor due to their out-of-sample predictive 

performance, but also because many of these methods can be applied in cases where 

conventional methods fail, such as when the number of observations in a dataset is greatly 

exceeded by the number of potential predictors (n << p) or when a great number of interaction 

effects may exist among the predictors but is not known to the researcher ex ante. For these 

reasons, machine learning has gained a foothold in genomics by enabling researchers to predict 

cancer subclasses, treatment outcomes, and drug responses for new patients utilizing microarray 

gene-expression data that contains information on thousands of genes for a relatively small 

sample of individuals previously diagnosed with cancer (Tibshirani, Hastie,  Narasimhan,  and 

Chu, 2002; Berrar, Sturgeon, Bradbury, Dubitzky, 2003). The ways in which machine learning is 

transforming and will transform the products and services we use are seemingly innumerable. 

The ways in which these techniques can broaden and improve research in economics and other 

social sciences, however, are just beginning to be discovered.  
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 A recent emergence of machine learning methods in applied economic research has taken 

place. Chalfin, Danieli, Hillis, Jelveh, Luca, Ludwig, and Mullainathan (2016) show that 

machine learning algortihms can aid in the hiring decisions of police departments to reduce the 

prevalence of police misconduct and in the teacher retention decisions of school districts to 

increase student test score gains. Kleinberg, Lakkaraju, Leskovec, Ludwig, and Mullainathan 

(2017) find that using a machine learning model to predict the crime risk of defendants could 

improve the bail decisions of judges in New York City such that a crime reduction of up to 

24.7% could be achieved with no change in the jailing rate, or a 41.9% decrease in the jailing 

rate could be achieved without a change in the crime rate. These predicition policy problems 

(Kleinberg, Ludwig, Mullainathan, and Obermeyer, 2015) are not the only area where machine 

learning can play a role in economic research: Athey and Imbens (2017) survey ways in which 

machine learning methods can aid in the estimation of both average and heterogenous treatment 

effects.  

  Machine learning techniques are also useful in record linkage, where observations from 

separate datasets that lack a common unique identifier are matched using  probabilistic methods. 

Feigenbaum (2016)  outlines a machine learning approach that automates the linkage of fathers 

from the 1915 Iowa State Census to their sons in the 1940 Federal Census, creating a dataset 

capable of measuring intergenerational income mobility over the sample period. Chang, Emad, 

Lane, Tokle, and Weinberg (2016) link the Survey of Earned Doctorates (SED) to UMETRICS 

source data by utilizing a machine-learning based two-stage approach that leverages the 

availability of a greater number of link keys for a subset of UMETRICS observations. 

 With the data revolution upon us, administrative data collected by businesses, 

government agencies, and academic institutions play an increasing role in economic research 

(Einav and Levin, 2014; Varian, 2014). Existing survey-based or administrative-based big data 

sources such as the American Community Survey (ACS) and the linked employee-employer 

Longitudinal Employer-Household Dynamics (LEHD) database are rich sources of demographic 

and economic information, but, as with any dataset, are lacking in a wide-range of details of 

interest to researchers.2 To obtain these details of interest not present in the big data source, it is 

common practice to identify a new dataset that does contain these variables, and then link across 

these sources using the “conventional method” illustrated in Figure 1: a new Dataset A is merged 

to an existing big Dataset B in order to create a new Dataset C comprised of all matched 

observations between the two datasets; the potential majority of the observations in big Dataset B 

that go unmatched are deleted as they lack variables that are key to the anticipated analysis.3 

Thus, part of the value of big datasets, namely a part of what makes them “big” in the first place 

                                                             
2 For example, researchers wanting to use the ACS or LEHD to examine the career trajectories of Ph.D. recipients 

who have completed a postdoc face signinifcant difficulty as there is no postdoc occupation category in the ACS and 

no occupation categories at all in the LEHD. Researchers could try to infer such information using ad-hoc methods 

based on an individuals age and earnings, but assessing the accuracy of these methods can be problematic. 

 
3 In Figure 1 we assume, for the sake of simplicity, that Dataset A shares a single unique identifier with Dataset B, 

that each observation in Dataset A matches to an observation in Dataset B, that N > n, and that the j variables in 

Dataset B are distinct from the k variables in Dataset A  (the “+1” variable in each dataset is the common unique 

identifier). 
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(i.e. containing many observations), is lost in the conventional process due to a tradeoff between 

more variables and more observations.   

 Depending on the nature of the two data sources, one may not need to eat away at big 

data to obtain additional variables of interest.4 Machine learning methods can allow researchers 

to extract new variables from smaller datasets and impute their values for unmatched 

observations in big datasets. This is illustrated in the “machine learning method” in Figure 1: 

First, the new Dataset A is merged with big Dataset B, but, in contrast to the conventional 

method, we retain the unmatched observations from big Dataset B. Then, for each variable 

originally unique to Dataset A, the researcher trains a machine learning algorithm on the 

matched observations, using only those variables found in Dataset B as predictors. Lastly, the 

trained algorithm is used to predict the values of the key variables for the unmatched 

observations. Of course, the efficacy of this method depends on the extent to which the variables 

in Dataset B are predictive of the key variables in Dataset A, but this can be transparently 

assessed using methods discussed in this paper. Another key assumption is that the observations 

in Dataset A are representative of those contained in Dataset B (i.e. that we do not have a 

problem of selective labels as discussed in Kleinberg, Lakkaraju, Leskovec, Ludwig, and 

Mullainathan, 2017 and Mullainathan and Obermeyer, 2017).5  

  A major focus of this paper is to describe and demonstrate the efficacy of the machine 

learning approach to merging datasets of disparate size. Our application of this method utlizes a 

new university-based administrative data source, UMETRICS, in conjunction with matched 

ACS-LEHD data on U.S. doctorates, to create a new longitudinal database that enables 

researchers to measure the labor market outcomes of STEM Ph.D. graduates and postdocs over 

their career. As we anticipate that machine learning methods will increasingly be used by 

economic researchers for both analysis and data construction, we describe these methods in some 

detail, and refer the reader interested in the technical details to expert sources (e.g. Hastie, 

Tibshirani, and Friedman, 2009). The strategies implemented in this paper are sufficiently 

general to be applied to any context where researchers merge datasets of disparate size, and so 

should be of interest to a broad community of researchers. 

 

                                                             
4 Of course, a researcher can always eat their data and have it too by contrasting the results of an analysis based on 

using the conventional method of merging datasets of disparate size with those obtained utilizing the machine 

learning approach outlined in this paper. 

 
5 This problem can be difficult to avoid. In our application, we only know whether an individual from a UMETRICS 

university is a postdoc or not if the person is grant-funded (this includes both federal and non-federal grants). Thus, 

our labels are selected based on grant-funded status, and so using our algorithm to predict on a sample that also 

contains individuals who are not grant-funded could be problematic if there are significant differences between 

individuals who are and are not grant-funded. As most postdocs are paid from grants (NSF Survey of Graduate 

Students and Postdoctorates in Science and Engineering, 2015), we believe this problem may not be a large issue. 

To check our priors, we will in the future compare the characteristics of our predicted postdocs to those found in the 

NSF’s Survey of Earned Graduates (SED), Survey of Doctorate Recipients (SDR), and Survey of Graduate Students 

and Postdoctorates in Science and Engineering (GSS). 

 



 

7 

 

Figure 1: Conventional and machine learning methods of merging datasets of disparate size 

 

 Our research follows work by Goldschlag,  Jarmin, Lane, and Zolas (2017) who use 

random forests to scale UMETRICS data with LEHD data in order to impute the research-trained 

status of workers found in the LEHD. Our machine learning based approach is similar to their 

approach, but differs in three fundamental ways. First, we compare the predictive power of 

different machine learning models based solely on their out-of-sample properties –rather than a 

balancing of in-sample and out-of-sample properties—since in-sample predictions are not needed 

in a subsequent analysis where the true postdoc status is known for in-sample observations.  

Second, we strictly separate the data used to select our preferred model from that used to 

estimate its out-of-sample error. A strict separation between the data used for model selection 

and that used for model assessment is necessary to protect against overly optimistic estimates of 

prediction error. Third, we implement a strategy for dealing with class imbalance by altering the 

probability cutoffs for positive prediction of our variable of interest (postdoc status), which leads 

to better predictive performance. Before discussing our machine learning strategy in detail, we 
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describe how we link across multiple Census data sources to obtain a linked employer-employee 

longitudinal dataset of the doctoral workforce. 

   

3. Description of Data Sources and Data Linkage Process 

 We utilize three major data sources in the construction of our analytical sample: 1) the 

American Community Survey (ACS), 2) Longitudinal Employer-Household Dynamics (LEHD) 

data, and 3) UMETRICS. These data are accessible to researchers with Special Sworn Status on 

approved projects via the Federal Statistical Research Data Centers (FSRDC) maintained by the 

U.S. Census Bureau. 

  The ACS is an annual survey administered by the U.S. Census Bureau and contains 

information on the occupations, educational attainment, and background characteristics (e.g. age, 

sex, place of birth, etc.) of survey respondents. After the 2000 Census, the ACS replaced the 

“long-form” of the decennial census which had previously been used to collect this information. 

Each annual ACS contains a nationally-representative snapshot of the American population 

covering approximately 3.5 million addresses annually (U.S. Department of Commerce, 2013). 

We utilize the annual ACS person files for years 2002-2015 in forming our analytical sample.  

  For each year of the ACS, we limit our sample to persons who indicate that they hold a 

doctorate degree, where persons are uniquely identified by nine-digit Protected Identification 

Keys (PIKs).6 We then append each yearly ACS doctorate dataset to form an “ACS Doctorate 

Panel” that spans the years 2002-2015. Individuals may appear more than once in the ACS 

doctorate panel only if they are randomly surveyed in multiple ACS years. Thus, the unit of 

observation for the ACS doctorate panel is person-year (or PIK-year).7  

  LEHD data is maintained by the U.S. Census Bureau and is primarily based on 

administrative data collected by U.S. States such as Unemployment Insurance (UI) earnings data, 

as well as the Quarterly Census of Employment and Wages (QCEW). We utilize two LEHD data 

sets when creating our analytical sample: 1) The Employment History Files (EHF) and 2) The 

Employer Characteristics Files (ECF). For both datasets, we utilize all observations between 

2002-2014. The EHF contains information on where individuals work each year and the earnings 

generated from their job(s) in each quarter. As in the ACS, individuals are uniquely identified by 

their PIK. Firms are identified by state employer identification numbers (SEINs) and 

establishments within each firm are identified by the SEIN reporting unit (SEINUNIT) so that an 

establishment is uniquely identified by SEIN-SEINUNIT (Vilhuber and McKinney, 2014). The 

raw EHF dataset is structured as a yearly job-level dataset where the unit of observation is an 

employee-employer combination within the given year (PIK-SEIN-SEINUNIT-year). For each 

                                                             
6 PIKs are internal Census identifiers randomly generated for each individual in order to protect the privacy of each 

individual person while also facilitating linkage across Census data platforms (Mulrow, Mushtaq, Pramanik, and 

Fontes, 2011). 

 
7 We keep all ACS observations for which the person ever reports earning a doctorate – that is, if a person is 

surveyed in 2005 and reports not having earned a doctorate, but then is surveyed again in 2011 and reports having 

earned a doctorate, we keep both observations.  
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employer-employee combination, we have the quarterly earnings, and so we reshape the EHF 

into a quarterly job-level dataset so that the unit of observation becomes PIK-SEIN-SEINUNIT-

year-quarter.8  

  The ECF contains establishment level information on US employers, including the 

establishment’s federal Employer Identification Number (EIN), industry (six-digit NAICS code), 

and measures of the size and age of the firm associated with the establishment. The ECF is an 

annual establishment-level dataset and thus unique at the SEIN-SEINUNIT-year level. 

  To create our “LEHD panel”, we link the EHF and ECF datasets by merging on 

establishment-year (SEIN-SEINUNIT-year). This effectively gives us the job profile for all 

individuals in LEHD states during 2002-2014 who have positive earnings reported in state UI 

data.9 Since we are only interested in the job profile of individuals who have earned doctorates, 

we keep only those observations that are associated with PIKs found in our previously created 

ACS doctorate panel.10 This LEHD doctorate panel is then linked to the ACS doctorate panel by 

person-year (PIK-year), creating our ACS-LEHD doctorate panel, where the unit of observation 

is person-establishment-year-quarter (PIK-SEIN-SEINUNIT-year-quarter). Figure 2 gives a 

diagrammatic summary of the process described above that is used to create our ACS-LEHD 

doctorate panel. 

 Our ACS-LEHD doctorate panel has one shortcoming that prevents us from carrying out 

a comparative analysis of PhD-holders who have and have not completed a postdoc: there is no 

way for us to tell which observations correspond to a quarter in which a person is employed as a 

postdoc, nor are we able to tell if a person has ever been employed as a postdoc. Therefore, we 

must introduce a third data source, UMETRICS, to obtain labels for postdoc status for a subset of 

our ACS-LEHD doctorate observations; once we have postdoc labels for a subset of our 

observations, we can use a machine learning approach to predict the postdoc status of the 

unlabeled subset of our ACS-LEHD doctorate observations. This then will allow us, in future 

work, to examine how employment as a postdoc affects career trajectories and how the postdoc-

trained workforce impacts the firms where they work. 

 UMETRICS (Universities: MEasuring The impacts of Research on Innovation, 

Competitiveness, and Science) is a database maintained by the Institute for Research on 

Innovation & Science (IRIS) at the University of Michigan and is accessible to Special Sworn 

Status researchers on approved projects in the Census FSRDCs11. UMETRICS is based on 

                                                             
8  Individuals employed at an establishment but who do not have strictly positive earnings at their employing SEIN 

in a given quarter will not have earnings reported within that SEIN for that quarter (Vilhuber and McKinney, 2014). 

Therefore, we code earnings as zero for any quarter where earnings is missing. 

 
9 U.S. states can voluntarily opt into or out of the LEHD program. LEHD states refer to those states that participated 

in the LEHD program in a given year. 

 
10 These observations are dropped either due to the PIK not being found in the ACS for years 2002-2015 or due to 

the PIK not having earned a doctorate in any years surveyed as part of the ACS. 

 
11 UMETRICS data can also be accessed via the IRIS virtual data enclave.  
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administrative data obtained from 19 IRIS member universities that contains information on 

grants or awards received by each university including which university employees are paid from 

each award and what vendors receive funds from the awards in exchange for goods and services 

(The Insititute for Research on Innovation & Science, 2017).12 UMETRICS data spans the years 

2001-2015, with more universities being added to the sample over time. 

 

Figure 2: Creation of ACS-LEHD Doctorate Panel 

 

 

 We utilize the Employee Transaction File (ETF) of the UMETRICS 2016Q3a release. 

The ETF contains university payroll transactions for employees paid on any (1) research-related 

federal or non-federal grants or (2) non-research-related activities such as work-study programs.  

Each IRIS-member university is assigned a unique “institutionid” for de-identification purposes, 

and each university employee paid on a grant or award is assigned an institution-specific 

“employeeid” so that individuals within UMETRICS can be uniquely identified by institutionid-

                                                             
12 The 19 IRIS member universities are as follows: Boston University, Michigan State University, New York 

University, Northwestern University, Ohio State University, Pennsylvania State University, Princeton University, 

Purdue University, Rutgers University, Stony Brook University, University of Arizona, University of Hawaii, 

University of Illinois at Urbana-Champaign, University of Iowa, University of Kansas, University of Michigan, 

University of Missouri, University of Pittsburgh, and University of Wisconsin.  
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employeeid.13 Each observation contains a “unique award number” that identifies an award and 

its funding source, the employeeid and institutionid of the person being paid off of the award, the 

period start date and end date that represents the beginning and end of the monthly pay period, 

and the occupational class of the employee. The occupational class encompasses 5 major groups 

of workers: Faculty, Staff, Post Graduate Researcher (i.e. Postdoc), Graduate Student, and 

Undergraduate.14 Persons in UMETRICS have been matched to Census persons and assigned a 

PIK, and so we are able to match individuals in UMETRICS to our ACS-LEHD doctorate panel. 

Once we link UMETRICS ETF to our ACS-LEHD doctorate panel, we obtain the occupational 

classification from the ETF for matching observations in the ACS-LEHD doctorate panel, 

resulting in a subset of observations in the ACS-LEHD doctorate panel where true postdoc status 

is known. 

 Figure 3 shows the steps used to merge our UMETRICS data into the previously created 

ACS-LEHD Doctorate Panel—we detail these steps in the Data Appendix. A quick summary of 

these steps is the following: First, we identify the postdoc status of a subset of our ACS-LEHD 

doctorate panel by merging with UMETRICS ETF data. Next, we keep only those observations 

in our overall sample where the employee is working in either “Colleges, Universities, and 

Professional schools” (NAICS=611310) or “General Medical and Surgical Hospitals” 

(NAICS=622110) since the vast majority of UMETRICS university employees are classified as 

working in these industries. This should improve the representativeness of our UMETRICS 

subsample, which is important since the UMETRICS subsample will be used to train our 

machine learning model used to predict the postdoc status of the non-UMETRICS subsample. 

This leads us to our final prediction sample referred to as the “ACS-LEHD Academic Doctorate 

Panel with UMETRICS” in Figure 3, which is unique on person-year-quarter (PIK-year-

quarter).15  

 Table A.1 displays the variable names and definitions for this dataset. Our goal is to 

predict, for each individual in the prediction sample, which quarters between 2002-2014 (if any) 

represent a period of employment as a postdoc. Our method, as discussed in the next section, is 

to utilize the UMETRICS subset of our data to train a machine learning algorithm where our 

postdoc indicator variable is the target, or the variable to be predicted, and the rest of the 

variables/features listed in Table A.1 are the predictors. 

                                                             
13 While a single individual will only have one employeeid within a single institutionid, if that individual moves to a 

different IRIS member university, he will be identified by a new institutionid-employeeid. However, UMETRICS 

data has been matched to Census PIKs, which should be able to identify the same individual as they move from one 

university or job to another. 

 
14 Employees classified as Staff are then classified into one of 10 subcategories so that there is a total of 14 

occupational categories in the data altogether. 

 
15 We are interested in predicting which quarters (if any) of an individual’s career are spent as a postdoc, and so a 

dataset unique on person-year-quarter is sufficient for this purpose. Our LEHD-based variables (see Table A.1), 

such as the job count variables and total earnings variables, are created to incorporate useful information from our 

more “general” job-level and non-NAICS restricted intermediate datasets used to form our final NAICS-restricted 

quarterly person-level prediction sample. 
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Figure 3: Creation of ACS-LEHD Academic Doctoral Panel with UMETRICS  
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4. Random Forests: What They Are and How to Tune Them 

 We utilize the random forest algorithm originally developed by Breiman (2001) and 

implemented in the R package randomForest (Liaw and Wiener, 2002) to predict the postdoc 

status of our ACS-LEHD doctorate sample. Random forests are one of the most popular out-of-

the box machine learning methods, being utilized in a variety of tasks such as image 

classification (Bosch, Zisserman, and Munoz, 2007), gene selection (Díaz-Uriarte and Alvarez 

de Andrés, 2006), and land cover classification (Gislason, Benediktsson, and Sveinsson, 2006). 

Random forests work by “growing” an ensemble of decision trees, obtaining predictions from 

each of these trees, and then averaging the predictions across these trees to generate a final 

prediction.16 In this subsection, we give a summary of classification trees and the random forest 

algorithm used for classification. 

 Classification trees are grown by iteratively partitioning a sample of data to group 

together observations with the same class label (e.g. “postdoc” or “not postdoc”) in a process 

known as recursive binary splitting. Figure 4 shows a fictional classification tree based on two 

predictors, along with its equivalent predictor-space representation. Classification trees partition 

the data at each step by selecting a predictor-cutpoint combination as the basis for the split; for 

example, in Figure 4 at internal node N1, observations are split based on the predictor age and 

the cutpoint of 35 years, resulting in the two daughter nodes N2 and N3. Generally, to determine 

how to split the observations, an optimal cutpoint for each predictor is calculated, and the 

predictor-cutpoint combination that gives the greatest gain in node purity is chosen to divide the 

data into two daughter nodes.17 This process is continued until a stopping criterion, such as the 

minimum number of observations allowed in a node, is satisfied. Observations in each terminal 

node (or leaf) of the decision tree are then predicted as belonging to the class held by the 

majority of observations in that terminal node. In Figure 4, the terminal nodes are labeled R1-R5 

since the observations grouped into these nodes are the same that would appear in the 

identically-named regions in the predictor-space representation of the classification tree. 

                                                             
16 See Hastie, Tibshirani, and Friedman (2009) for an extensive and technical treatment of machine learning, and see 

James, Witten, Hastie, and Tibshirani (2013) for an introductory treatment with applications using R statistical 

software. Breiman, Friedman, Olshen, and Stone (1984) is the classic reference for classification and regression 

trees. As a note of terminology, a decision tree is referred to as a classification tree when the variable to be predicted 

is a categorical variable, and is referred to as a regression tree in cases where the variable is non-categorical (e.g. 

continuous variables and count variables).  

 
17 Let 𝑝𝑚𝑘 be the proportion of observations at internal node m that are of class k. Then the Gini index at that node is 

calculated as ∑ 𝑝𝑚𝑘(1 − 𝑝𝑚𝑘)
𝐾
{𝑘=1}  where a smaller value of the Gini index represents a node of greater purity.  The 

predictor-cutpoint combination used to split at an internal node is chosen so that the resulting two daughter nodes 

give the largest decrease in the Gini index, where the decrease in the Gini index is calculated as follows: first, the 

Gini index for each daughter node is calculated and weighted by the proportion of parent-node observations falling 

into that node, and then these measures are subtracted from the value the of the Gini index of the parent node.  

Recursive binary splitting is referred to as a top-down, greedy approach because at each stage, the data is partitioned 

to maximize the gain in node purity at that step without considering how a given partition will affect future 

partitioning of the data and thus ultimate node purity at the terminal nodes – this is done for computational 

feasibility.  
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 A strength of classification trees is that they automatically capture interaction effects 

among predictors without the user needing to specify a set of interaction terms ex ante.18 A major 

weakness of classification trees is that they suffer from high variance: the structure of a given 

decision tree is highly dependent on the data used to train the model such that a small change to 

the data may result in a non-negligible change in the tree structure, which can cause a noticeable 

change in the predictive performance of the model as measured by the model’s out-of-sample (or 

test) error. In order to mitigate the weaknesses of unstable (high variance) learners such as 

classification trees, Breiman (1996) introduced an ensemble method known as bagging 

(Bootstrap AGGregatING).19 This method works by  

 

Figure 4: Example of a classification tree and its equivalent predictor-space representation 

 

 

taking B bootstrap samples from the available training data, fitting a classification tree to each of 

the bootstrap samples, generating a prediction from each tree for each observation, and then 

classifying each observation based on a majority vote – that is, the final prediction for each 

observation is the most commonly predicted class among the B predictions.20 Figure 5 gives a 

schematic representation of a bagged tree model. 

 Random forests improve upon bagged trees by introducing a source on randomness into 

the tree growing process: at each internal node in each tree, a random subset of the available 

predictors is first chosen, and then the best split among these randomly chosen predictors is used 

to split at the node; this contrasts with bagged trees, where the best split among all available 

predictors is chosen. It may seem odd that random forests typically perform better than bagged 

                                                             
18 Mullainathan and Spiess (2017) highlight this aspect of decision trees in a regression context.  

 
19 Ensemble methods are methods that generate predictions by combining the predictions of a set of “base-learners” 

such as decision trees. Popular ensemble methods include bagging, boosting, averaging, and stacking.  

 
20 This is assuming the default threshold of 50%.  
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trees given that the only difference between these two methods is that random forests restrict the 

available information considered at each node of each tree. However, the intuition for the 

performance improvement of random forests over bagged trees stems from the fact that the 

variance of an average of identically distributed random variables is decreasing in the pairwise 

correlation of these variables. By introducing a source of randomness into the tree-growing 

process, random forests decorrelate the trees, thus leading to a smaller variance in prediction 

relative to bagged trees.21  

 Each tree in a random forest is grown on a bootstrapped sample of the original training 

data which, due to sampling with replacement, contains approximately two-thirds of the original 

 

Figure 5: Schematic representation of Bootstrap Aggregated (“Bagged”) Classification Trees 

 

 

 

                                                             
21 See Hastie, Tibshirani, and Friedman (2009) Ch. 15 for technical details. 
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training observations.  The approximately one-third of the original training observations that are 

not used to train a given tree are referred to as the out-of-bag (OOB) observations of that 

decision tree. It follows that each observation of the original training data will be in the OOB 

sample of approximately one-third of the decision trees grown in a random forest. The OOB 

error rate of a random forest is obtained by generating predictions for each original training 

observation from only those trees for which it is part of the OOB sample, measuring the average 

error in classification for each observation based on its OOB predictions, and then averaging 

these error rates across all observations.22 The OOB error rate is a measure of the predictive 

performance of a random forest and is used to select the number of decision trees grown in a 

random forest model: The number of trees is selected to be large enough that the OOB error rate 

becomes relatively stable – with no risk to overfitting by growing too many trees. 

 Random forests contain one hyperparameter that the user tunes to obtain the best random 

forest model: the number of randomly selected variables considered for node splitting at each 

node in each decision tree, which we refer to as the number of “splitting variables.”23 One way to 

tune a random forest model is to compare the OOB error rates that are obtained by changing the 

number of splitting variables and then selecting the hyperparameter value that yields the lowest 

OOB error rate. However, since the OOB error rate is a measure of the overall classification 

error rate of the model, it is sensitive to the probability cutoff used for positive prediction. By 

default, the cutoff is set to 0.5 meaning that, in our application, all observations with a predicted 

probability of being a postdoc greater than 0.5 would be classified as postdocs.24 While a 

seemingly reasonable default, the 0.5 probability threshold may not be optimal as there is no 

guarantee that this threshold minimizes classification error, and even if it does achieve the 

minimum classification error, such a property may not be desirable in the presence of class 

imbalance since prediction will tend to favor the most commonly occurring class, leading, in our 

case, to a greater prevalence of false negative predictions compared to false positive predictions. 

A threshold that balances the two types of errors may be more desirable, and so tuning a random 

forest model using a metric that is sensitive to the choice of the cutoff should generally be 

avoided in the case of class imbalance.25 

                                                             
22 The OOB error rate and predictions are calculated automatically in the implementation of the random forest 

algorithm in the R randomForest package.  

 
23 For classification problems, the recommended default value for the number of splitting variables (m) is equal to 

the square root of the total number of predictors (p) (Hastie, Tibshirani, and Friedman, 2009). Another 

hyperparameter that could be adjusted for a random forest is the size or depth of the individual trees making up the 

random forest (“minimum observations in node”); however, Hastie, Tibshirani, and Friedman (2009) suggest that 

tuning this parameter does not typically lead to large changes in predictive performance, especially in the case of 

classification (596). We leave the minimum observations in node hyperparameter set to one, which is the default 

value for classification trees (Hastie, Tibshirani, and Friedman, 2009). 

 
24 The probability of being a postdoc is calculated as the proportion of decision trees in a random forest that predict 

an observation as belonging to the postdoc classification.  

 
25 If costs differ between false positive and false negative errors, a threshold minimizing the cost could be selected. 
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Table 1: Confusion matrix 

  Actual  

Predicted Not Postdoc Postdoc 

Not Postdoc True Negative (TN) False Negative (FN) 

Postdoc False Positive (FP) True Positive (TP) 

 

  A preferred alternative is to rely on a method that explicitly considers the tradeoff 

between false positive and false negative errors as the cutoff is altered. One such method is to 

use the OOB predictions to graph a Receiver’s Operating Characteristic (ROC) curve for each 

value of the hyperparameter and choose the number of splitting variables that maximizes the area 

under the ROC curve.26 To understand the reasoning behind this method, it is helpful to first 

introduce what is referred to as a classification method’s confusion matrix, as shown in Table 1. 

A confusion matrix counts the number of true positive, true negative, false positive, and false 

negative predictions made by a classifier. For a random forest model, we can obtain a confusion 

matrix based on how well the model predicts the classes of OOB observations. From there, we 

can calculate the various error and accuracy measures shown in Table 2.  

 

Table 2: Accuracy and Error Measures 

Name of Measure Definition 

Accuracy (TP + TN) / (TP + TN + FP + FN) 

Misclassification/Error Rate (FP + FN) / (TP + TN + FP + FN) ≡ 1 - Accuracy 

True Positive Rate (TPR) TP / (TP + FN) 

False Positive Rate (FPR) FP / (TN + FP) 

True Negative rate (TNR) TN / (TN + FP) ≡ 1-FPR 

False Negative Rate (FNR) FN / (TP + FN) ≡ 1-TPR 

Positive Predictive Value (PPV)  TP / (TP + FP) 

Negative Predictive Value (NPV) TN / (TN + FN) 

 

  An ROC curve is simply a plot of the true positive rate vs. the false positive rate achieved 

by a given predictive model across all alternative probability cutoffs. The top panel of Figure 6 

shows two examples of ROC plots. The dotted diagonal line in each plot represents the 

performance expected using random guessing for prediction. The connected red lines touching 

the border represents the performance of a perfect predictive model since it intersects with point 

                                                             
26 See Lahiri and Yang (2013) and Kuhn and Johnson (2013) for an overview of ROC curve analysis.  
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(0,1) in ROC space, which is associated with a 100% TPR and 0% FPR. The blue and green 

curves lying above the diagonal are two ROC curves, each associated with a separate 

hypothetical predictive model such as two random forests with different values for the number of 

splitting variables. Each point on the ROC curve gives the (FPR, TPR) combination achieved by 

a particular probability threshold; points farther to the right along a given ROC curve correspond 

to lower probability cutoffs.27  

 In the upper left-hand panel of Figure 6, we see that the model corresponding to the blue 

ROC curve strictly dominates the model corresponding to the green ROC curve since the “blue 

 

Figure 6: Example Receiving Operator Characteristic (ROC) plots 

 

 

 

                                                             
27 Keeping in mind that TPR ≡ 1 – FNR, an ROC curve explicitly shows that lowering the probability cutoff results 

in a lower incidence of false negative errors at the cost of an increase in false positive errors. 
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model” achieves a higher true positive rate for any given false positive rate, and thus outperforms 

the “green model” across all probability thresholds. However, deciding between models based on 

visual inspection of ROC curves is not always so straightforward. For example, in the right-hand 

panel of Figure 6, we have ROC curves that intersect and overlap, meaning that what model is 

“better” depends on the probability threshold under consideration. Without a particular 

probability threshold in mind a priori, a judicious approach is to select the model that exhibits 

the greatest “global” skill over all possible probability thresholds, rather than a model that 

exhibits the greatest “local” skill at a particular probability threshold such as the 0.5 default. This 

can be done by calculating the area under each ROC curve and then selecting the model that 

gives the maximum area under the curve (AUC). 28 Since the AUC of a model takes account of a 

model’s performance across all probability thresholds, it is a more appropriate metric to use 

when tuning a random forest compared to the OOB error rate of the model which is necessarily 

dependent upon the choice of a probability cutoff. 

 After tuning a random forest model by selecting the number of splitting variables that 

maximizes AUC, one still needs to determine the appropriate probability cutoff to use for 

prediction. This is particularly important in cases where class imbalance is an issue, as the 

default cutoff is likely to overpredict the most commonly occurring class. This can be done by 

selecting the threshold that maximizes some measure of local skill. Two popular cutoff choices 

are those that either minimize the sum of squared false positive and false negative rates (FPR2 + 

FNR2) or maximize the sum of true positive and true negative rates (TPR + TNR). We refer to 

the cutoff that minimizes the sum of squared false positive and false negative rates as the “top-

left” cutoff, as this cutoff identifies the point on the ROC curve closest to point (0,1) in ROC 

space. This cutoff is represented in the bottom panel of Figure 6 as the purple point on the ROC 

curve. We refer to the cutoff that maximizes the sum of true positive and true negative rates as 

the “Youden” cutoff since this cutoff maximizes the Youden Index (Youden, 1950): TPR + TNR 

– 1. The Youden cutoff identifies the point on the ROC curve where the model is most skilled 

relative to random guessing, that is, where the vertical distance between the ROC curve and the 

no-skill diagonal is greatest. This cutoff is represented in the bottom panel of Figure 6 as the 

orange point on the ROC curve. To choose between these cutoffs, one can use the accuracy and 

error measures in Table 2 and choose the cutoff that is most desirable, in terms of the metrics 

viewed as most important, for the application at hand.  

 

5. Model Selection and Assessment of Random Forests: An Application for Predicting 

Postdoc Status 

 In this section, we describe our machine learning based strategy for using the 

UMETRICS subsample of the ACS-LEHD doctorate panel to predict postdoc status for the rest 

of the observations in the ACS-LEHD doctorate panel. Unfortunately, the exact results of our 

method are pending Census disclosure. As we await disclosure review, and because we think it is 

instructive to clarify how our methods work with an example, we show our method applied to a 

publicly-available dataset of spam and non-spam emails available through the UC Irvine 

                                                             
28 AUC lies in the range [0,1], with a perfect predictive model having AUC=1 and random guess having AUC=0.5.  
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Machine Learning Repository.29 This dataset contains information from 4601 emails including 

how many times an exclamation mark appears in the email and the longest string of ALL CAPS 

in the email, as well as whether the email was ultimately classified as spam or not spam. This 

enables the dataset be used to predict whether an email is spam based on 57 characteristics of the 

text. All graphics pertaining to the performance of different models are based on this spam data; 

all tables describing model performance are also based on spam data where not left blank. 

Notwitstanding that these results are based on the spam dataset, we describe our method in terms 

of predicting postdocs so that the methods can be understood in terms of the context of our aims, 

which is to obtain accurate predictions of postdoc status as an essential step towards producing a 

linked employer-employee longitudinal dataset of the doctoral workforce that enables 

researchers to analyze the labor market outcomes of STEM PhD graduates and postdocs. 

   A quick summary of our method is as follows: First, we split the UMETRICS subset of 

our ACS-LEHD doctorate data into a training set (50%) and a test set (50%). The training set is 

used to train competing random forest models, the area under the ROC curves generated from the 

OOB predictions from each model are used to compare our competing random forest models (i.e. 

tune the splitting variables hyperparameter), and then the OOB predictions are used to identify 

alternative probability cutoffs for positive prediction to mitigate for class imbalance. To assess 

the predictive accuracy of our tuned random forest model, we estimate the misclassification error 

using the test data. Once our model is assessed, we then retrain the model on all the UMETRICS 

data and use this trained random forest model to predict the postdoc status of the non-

UMETRICS observations in our ACS-LEHD data. Table 3 outlines this strategy for model 

selection, assessment, and prediction. We give the rationale for our method in what follows. 

 

Table 3: Random Forest Model Selection (Steps 1-3), Assessment (Step 4), and Prediction (Step 

5)  

1. Partition data into a training set and test set (50%-50% split). 

2. For random forest models with different number of splitting variables: 

i. Train model on the training set. 

ii. Output model that performs the best in terms of AUC using OOB predictions. 

3. Identify alternative cutoffs/thresholds based on OOB predictions. 

4. Estimate generalization error using the test set. 

5. Retrain selected model on all labeled /UMETRICS data and use to predict postdoc status 

for all non-labeled/non-UMETRICS observations. 

 

  The training (or apparent) error rate of a predictive model is an overly optimistic measure 

of prediction error; this is because when any model is trained or estimated on a given dataset, it 

is likely not only to discover signals in that data that are useful for out-of-sample prediction, but 

                                                             
29 It is known as the “Spambase Data Set” on the UCI Machine Learning Repository, and can be found at 

https://archive.ics.uci.edu/ml/datasets/spambase, or easily accessed via the R package “ElemStatLearn.” 

https://archive.ics.uci.edu/ml/datasets/spambase
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also to fit sample-specific noise. To properly assess the predictive power of a model, a portion of 

data should be withheld during the training process so that performance of the model on out-of-

sample data can be accurately assessed. Therefore, we partition the data into a training set used 

to train and tune our random forest model (model selection), and save the other 50% of our 

UMETRICS data to be used as our test set to estimate the out-of-sample performance of our 

tuned random forest model (model assessment). It is important that no data used in model 

assessment is used in model selection (i.e. feature selection, hyperparameter tuning, model 

comparison), and vice versa.30 Therefore, we utilize OOB predictions, rather than test set 

predictions, as the basis of our performance measures used for model tuning. Our test set 

predictions are only used when estimating the generalization error of our tuned random forest 

model. 

 After splitting our UMETRICS subsample into a training set and test set, we train four 

random forest models, each with a unique value for the number of splitting variables considered 

at each tree node.31 Figure 7 shows the OOB error rate for each of the four different random 

forest models, where we use the spam data from the UCI Machine Learning Repository as the 

basis for these figures as our real results are pending Census disclosure. As we can see, the OOB 

error rate for each model becomes relatively stable such that the model with the number of 

splitting variables (m) equal to the square root of the number of available predictors (p) tends to 

perform best on this metric. Based on Figure 7, we use 1000 trees in our random forest, which is 

well past the point where the error rates for each model stabilize.  As noted in the previous 

section, the OOB error rate measures the classification error rate of the model, and is thus 

sensitive to the probability cutoff used for positive prediction. Rather than selecting the random 

forest model with the lowest OOB error, we would like to select a model based on the global 

skill of that model over all possible probability thresholds. Therefore, we tune the number of 

splitting variables by first calculating the area under the ROC curve (AUC) for each random 

forest model and then selecting the model with the number of splitting variables that maximizes 

AUC. Figure 8 shows that the random forest model with the number of splitting variables equal 

                                                             
30 Ambroise and McLachlan (2002) show that using a full dataset for feature selection prior to partitioning the data 

into a training set and test set leads to an optimistic bias in cross-validation (CV) error estimates. Varma and Simon 

(2006) show that the CV error rate used to tune a model underestimates the generalization error of the model, 

although Tibshirani and Tibshirani (2009) provide evidence that this mostly occurs in cases where the number of 

features greatly exceeds the number of observations (n << p).  Cawley and Talbot (2010) show that tuning a 

model’s hyperparameters using the full set of data prior to partitioning the data and calculating the test set error will 

lead to an optimistically biased estimate of the generalization error. Hastie, Tibshirani, and Friedman (2009) warn 

that tuning hyperparameters or selecting a model based on minimizing the test set error will cause the test set error 

to underestimate the generalization error.  

 
31 For computational feasibility, Kuhn and Johnson (2013) suggest only tuning over a limited number of values for 

the number of splitting variables. Our first three values are chosen following the exposition in James, Witten, Hastie, 

and Tibshirani (2013) whom compare the default value of 𝑚 = √𝑝 with 𝑚 = 𝑝/2 and 𝑚 = 𝑝 (bagged trees). We 

also consider 𝑚 = 𝑝/3 , which corresponds to the suggested default value for random forests in a regression context 

(Hastie, Tibshirani, and Friedman, 2009) and puts the number of splitting variables roughly halfway between 𝑚 =

√𝑝 and 𝑚 = 𝑝/2 in our application. In all four cases, we round the number of splitting variables to the interger 

value closest to these targeted values.  
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to the square root of the number of available predictors achieves the greatest AUC, and thus 

represents our tuned random forest model. Again, Figure 8 is based on the spam data from the 

UCI Machine Learning Repository as our postdoc prediction results are pending Census 

disclosure. 

 Having selected the random forest model with the greatest global skill, we now identify 

alternative probability thresholds to use for positive prediction of postdoc status. Kuhn and 

Johnson (2013) suggest considering alternative probability cutoffs for positive prediction to 

account for class imbalance since class imbalance leads to error rate imbalance – a predictive 

model seeking to minimize classification error will tend to favor predicting the most commonly 

occurring class. In our case, since postdoc is the rarer class, we would expect the false negative 

rate to exceed the false positive rate (or equivalently, the true negative rate to be greater than the 

true positive rate). Therefore, in addition to considering the default 50% cutoff and the cutoff 

that minimizes the total classification error, we also examine two thresholds that are less 

sensitive to class imbalance. The first of these alternatives is the “top-left” cutoff which 

corresponds to the point on the ROC curve that minimizes the Euclidean distance between the 

ROC curve and point (0,1) in ROC space. The second alternative is the “Youden” cutoff which 

corresponds to the point on the ROC curve that is the greatest vertical distance away from the 

no-skill (random) forecast represented by the diagonal line in Figure 8. All cutoffs are derived 

using the OOB predictions of our random forest model.32 

 

Figure 7: 

 

                                                             
32 Refer to our discussion of ROC curves in the previous section for details on how to compute these cutoffs. 
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Figure 8:  

 

 Table 4 gives the different probability cutoffs that we consider for our model, with the 

corresponding OOB error rates used to derive the cutoff values. These results are based on the 

spam data, but we discuss these results as if they were the result of our postdoc prediction to 

keep the focus on the decision-making context relevant to our actual model selection task. As we 

can see, the cutoff that minimizes the OOB error is close to the default 0.5 threshold, and the top-

left and Youden cutoff are close in value. As is typically the case, moving from the default cutoff 

to the Youden or top-left cutoff results in a drop in total accuracy, but a more even distribution of 

errors in terms of false negatives and false positives. Altering the probability cutoff to the 

Youden or top-left cutoff helps counter the problem of class imbalance that typically results in 

prediction models that favor predicting the most commonly occurring class. If the ultimate 

objective is to accurately predict as many true postdocs as possible, then the top-left cutoff 

appears to be the best choice as it achieves the highest TPR of any cutoff considered in Table 4. 

A TPR of 94.09% means that 94.09% of all true postdocs will be predicted as being postdocs by 

our model. However, the increase in TPR comes at the expense of lowering the purity of our 

predicted postdoc sample; while we increase the percentage of true postdocs that we predict as 

postdocs, we also increase the percentage of nonpostdocs that we incorrectly predict as being 

postdocs. This shows up in a decrease in the PPV of the random forest model when moving from 

the default 0.5 cutoff to the top-left cutoff. While achieving the best TPR of all the cutoffs, we 

can see that the top-left cutoff also achieves the worst PPV of any of these cutoffs. A PPV of 

91.97% means that, of all those observations that we predict as being postdocs, only 91.97% are 
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truly postdocs.33 Without information on the relative costs of false positive and false negative 

errors, it is somewhat a matter of researcher preference as to which cutoff is best. Ultimately, we 

favor using the Youden cutoff. This is because we are interested in both accurately predicting 

true postdocs (high TPR) and ensuring that our predicted postdocs are indeed postdocs (high 

PPV); the Youden cutoff strikes the most equitable balance between these two measures. 

Additionally, the Youden cutoff represents the cutoff at which our random forest is most skilled 

relative to random guessing, as discussed in the previous section, and this adds some intuitive 

appeal. Thus, we select the random forest model with √𝑝 predictors and a probability cutoff of 

0.43 as our final prediction model. 

 

Table 4: Random Forest Accuracy by Cutoff using Training Set OOB Predictions  

Cutoff Accuracy  

Default Min Error Top-left Youden Total TPR TNR PPV NPV 

0.50 … … …  94.43% 91.02%   96.68%  94.75%  94.28% 

… 0.56 … …  94.87% 90.36% 97.84% 96.49%  93.91% 

… … 0.39 … 94.39% 94.09% 94.59% 91.97%  96.05% 

… … … 0.43   94.70%  92.99% 95.82%   93.61%  95.41% 

 

  It is important to note that, while useful for deciding on which probability threshold to 

select, the accuracy measures given in Table 4 are an optimistically biased estimate of the 

generalization accuracy of each model since selection of the random forest model with √𝑝 

splitting variables was chosen based on its performance on the OOB observations. Therefore, 

having finished our model selection, we consider how well our selected model predicts on the 

test set observations that were not used during any of the model selection steps to get unbiased 

measures of the generalization accuracy of our selected model. Table 5 displays our calculated 

accuracy measures for these test set predictions when our method is applied to the spam dataset. 

Reassuringly, our model performs strongly on data it had never “seen” at any point in the model 

selection process.  

Table 5:  Random Forest Accuracy using Test Set Predictions 

Accuracy 

Total TPR TNR PPV NPV 

94.61%  92.89%  95.72%   93.30%  95.44% 

                                                             
33 While these measures are close in value for this application to spam data, one could hypothetically obtain a 

predictive model with a high PPV and low TPR—for example, imagine a sample with 100 postdocs and 900 

nonpostdocs. If only one observation were predicted to be a postdoc, and if this prediction was correct, the model 

would have a 100% PPV and a 1% TPR. Likewise, one can (easily) obtain a high TPR and a low PPV by simply 

classifying all observations as postdocs—in our example, this would lead to a 100% TPR and 10% PPV. Therefore, 

it is important to consider both measures when choosing among different cutoffs, rather than one in isolation. 
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  The Table 5 measures of accuracy can likely be viewed as conservative estimates of the 

generalization accuracy since they are based on a model trained on only 50% of the available 

UMETRICS-ACS-LEHD data. Since it is likely that training on more data will add to the 

predictive power of the model, these estimates likely exhibit a pessimistic bias. When making 

our predictions for the non-UMETRICS subset of our ACS-LEHD doctorates, we train our tuned 

random forest model on all the UMETRICS data, so we would like an estimate of the 

generalization error of this model that uses 100% of the available data. Unfortunately, we are not 

aware of a method to measure this error in an unbiased and computationally-feasible way. 

Therefore, we measure this error using the OOB error of the random forest model trained on all 

the UMETRICS data, noting that this measure of error may be optimistically biased; our results 

as applied to the spam dataset are in Table 6. In an informal sense, we can view the accuracy 

measures in Table 5 and Table 6 as a lower bound estimate and upper bound estimate of the 

generalization error, respectively. 

 

Table 6:  Random Forest Accuracy using OOB Predictions  

                from Random Forest Trained on Full Data 

Accuracy 

Total TPR TNR PPV NPV 

 95.41% 94.54%  95.98%     93.87%  96.43% 

 

 The random forest algorithm has two built-in methods for evaluating the importance of 

different predictors. The importance measures used by the random forest algorithm are 

descriptive in nature. The first importance measure is referred to in the randomForest package as 

“mean decrease accuracy” and is described in Breiman (2001). The method works as such: first, 

the OOB accuracy for each tree is recorded.34 Then, the OOB accuracy for each tree is calculated 

after randomly permuting the value of each predictor, one predictor at a time; by randomly 

shuffling a predictor’s values in this way, any link between the predictor and postdoc status is 

effectively broken, and so the OOB accuracy should decrease in proportion to the importance of 

the variable in prediction. For each predictor, the decrease in OOB accuracy is averaged over all 

trees and normalized by the standard deviation of these differences. The second measure of 

predictor importance, called “mean decrease Gini”, reports the decrease in the Gini index, a 

measure of node impurity, from splitting on each predictor, averaged over all trees in the random 

forest. Figure 9 gives our results using these measures of importance on the spam data from the 

UCI Machine Learning Repository, as our true results are pending Census disclosure. 

 

 

 

                                                             
34 OOB accuracy = 100% - OOB Error Rate 
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Figure 9: Random forest importance measures of predictors

 

 

6. Comparison of random forest model with other predictive models 

  Since no single machine learning algorithm dominates all others across all applications 

(James, Witten, Hastie, and Tibshirani, 2013), it is useful to compare the performance of our 

random forest model with other models. If a different model does better than random forests, 

then we may as well adopt that model for prediction. One popular alternative to random forests is 

known as boosted trees. Boosting, like bagging, is an ensemble method based on averaging 

predictions across many simple learners such as classification trees.35 However, these two 

approaches differ in several aspects. First, with bagged trees, each tree is grown to be large, 

while in boosting, typically trees with only a few splits each are grown. A second and more 

significant difference is that with bagging, each tree is grown independent of the other trees in 

the ensemble, whereas with boosting trees are grown sequentially, with each tree’s structure 

depending on the structure of the trees before it. Specifically, each successive tree in a boosted 

tree model places more weight on correctly predicting observations for which previous trees in 

the ensemble performed poorly. The predictions of the model are updated as each tree is grown, 

with more weight being applied to trees that achieve greater accuracy. The rate at which this 

updating occurs is controlled by a shrinkage parameter. Altogether, boosted trees contain three 

hyperparameters that the user must tune: the number of trees, the size of each tree (interaction 

depth), and the rate of learning (shrinkage) across trees. Typically, the choice of a smaller 

shrinkage parameter will necessitate growing a larger number of trees, and in practice, Hastie, 

Tibshirani, and Friedman (2009) suggest choosing the size of the trees to be such that the number 

                                                             
35 Our description of boosting is based on the Adaboost algorithm developed in Freund and Schapire (1997). 
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of terminal nodes is around 6, finding that variation in the size of the trees seldom provides 

significant improvement.36 Gradient boosted machines, which are a generalization of boosted 

trees introduced in Friedman (2001), are implemented in the R package gbm (Ridgeway, 2007).  

 

 Table 7: Machine Learning Model Selection (Steps 1-4), Assessment (Step 5), and Prediction   

     (Step 6) 

1. Partition data into a training set, validation set, and test set (50%-25%-25% split).37 

2. For each machine learning algorithm: 

i. Train model on the training set using different values of hyperparameters. 

ii. Use repeated CV to estimate AUC for different hyperparameter combinations. 

iii. Output model that performs the best in terms of AUC as measured by repeated 

CV. 

3. Pick machine learning algorithm whose tuned model gives the best AUC on validation 

set. 

4. Identify alternative cutoffs/thresholds based on validation set. 

5. Estimate generalization error using the test set. 

6. Retrain selected model on all labeled /UMETRICS data and use to predict postdoc status 

for all non-labeled/non-UMETRICS observations. 

 

 To compare different types of machine learning models, we adopt the method of model 

selection and assessment outlined in Table 7. While similar to our strategy in Table 3, there are 

two main differences. First, we partition the UMETRICS subsample into three sets (a training 

set, validation set, and test set) rather than two sets (a training set and test set). The training set is 

used to train and tune each individual machine learning model, the validation set is used to 

compare between different machine learning models and identify alternative cutoffs, and the test 

set is used to estimate the generalization error of our selected model as before. The second 

difference is that we use repeated K-fold cross-validation (CV) to tune our different machine 

learning models.38 K-fold CV works as follows: 1) the training set is partitioned into K folds, 2) 

For each fold k: the model is trained on all folds except fold k, and then predictions are made for 

fold k and AUC is calculated, 3) the K AUC calculations are averaged to obtain a single CV 

                                                             
36 A tree with 6 terminal nodes allows for fifth-order interactions between the predictors.  

 
37 Hastie, Tibshirani, and Friedman (2009) state that it is too difficult to give a general rule for how to partition the 

data, but that a typical split might be 50%-25%-25%. The validity of our method does not hinge on the choice of 

data partitions. 
 
38 While we could again use AUC calculated from ROC curves based on OOB observations instead of K-fold CV to 

tune our random forest model, we choose the latter so as to follow the general strategy put forth in Table 7 which 

can be applied for any machine learning model, including those not considered here, e.g. support vector machines, 

neural networks, etc. 
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estimate of AUC. The calculated K-fold AUC depends on the partitioning of the original data, 

and so one way to reduce this source of variance is to repeat K-fold CV multiple times.39 We 

give a schematic representation of K-fold CV in Figure 10. 

 

Figure 10: K-fold cross-validation (CV) method for calculating AUC with K = 5 

 

 

 We compare two machine learning algorithms, random forests and boosted trees, using 

the method described in Table 7. We also compare the performance of these two algorithms with 

a linear probability model and logit model where each predictor enters the model additively with 

no interaction terms. As we will see, both random forests and boosted trees achieve greater 

accuracy in prediction compared to a linear probability model and logit model. Additionally, we 

find that random forests and boosted trees are comparable in performance. Due to the ease and 

speed of tuning random forests relative to boosted trees, we prefer a random forests approach to 

prediction.   

  We tune our random forest model over the same values of the splitting variables that we 

considered in the previous section. For boosted trees, we tune over combinations of the following 

parameter values: Number of trees = {5000, 8000, 110000}, shrinkage rate = {0.001, 0.01, 0.1}, 

and interaction depth = {1, 2, 3}. Our tuning results for random forests and boosted trees are 

found in Figures 11 and 12, respectively, which are based on the spam data.  As we can see, the 

random forest model with √𝑝 splitting variables performs best amongst random forests models, 

and the boosted trees model with {number of trees, shrinkage rate, interaction depth} = {5000, 

                                                             
39 Kim (2009) compares repeated 10-fold CV to other methods of comparative computational requirements and 

recommends repeated CV for general use. We use the R package caret (Kuhn, 2008) to perform repeated CV. We 

only use 5-fold CV for spam data for computational convenience, but use 10-fold CV repeated 5 times when tuning 

models used for postdoc prediction. 

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Notes : "Fold k  AUC" is the AUC calculated by first training a machine learning model on all  observations not in the 

k th  fold (i.e. the blue folds), and then using this model to predict the classes of fold k observations (the beige fold); 

such predictions can be used to graph an ROC curve and calculate the area under the curve. 

Fold 1 AUC

Fold 2 AUC

Fold 3 AUC

Fold 4 AUC

Fold 5 AUC

K -fold CV AUC = Average AUC

Training Sample

Randomly Distribute Training Observations into 5 

Folds/Partitions (without replacement) 
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0.01, 3} performs best amongst the boosted trees models considered, and so these two models 

represent our tuned random forest model and boosted trees model, respectively. 

 

Figure 11: 5-fold CV Estimate of AUC for Random Forest Models 
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Figure 12: 5-fold CV Estimate of AUC for Boosted Trees Models 
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   Next, we compare our random forest model and boosted tree model directly by 

calculating the AUC of each method when applied to the validation set. As we can see in Figure 

13, these two methods achieve comparable performance on the spam data, and each method 

performs better than a linear probability model and logit model, where our LPM and logit 

specifications contain all predictors but no interaction terms.  

 

Figure 13:  

 

  On this basis, we select the random forest model since it achieves the highest AUC based 

on the validation set. From here, we can use the validation set to identify alternative probability 

thresholds to mitigate for class imbalance. While we believe picking the predictive model that 

achieves the highest AUC is a prudent approach, especially when considering many types of 

models, we show the error rates for alternative cutoffs for each of the four types of models 

considered in this section in Table 8. As we see in Table 8, boosted trees and random forests 

outperform both our LPM and logit model, likely due to the fact that these models can 

automatically capture complex interaction effects in the data without these interactions needing 

to be specified by the researcher ex ante. We also see that random forests and boosted trees 

perform quite similarly. Since boosted trees are more difficult and computationally intensive to 

tune, we favor using the random forest model over boosted trees when results between the two 

methods are similar. Again, we choose the random forest model with Youden cutoff as our final 

prediction model. 
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Table 8: Error Rates by Cutoff using Validation Set Data 

  Cutoff Accuracy 

Model Default Min Error Top left Youden Total TPR TNR PPV NPV 

LPM 0.50 … … … 88.43% 78.04% 95.36% 91.82% 86.69% 

LPM … 0.42 … … 90.87% 88.04% 92.75% 89.01% 92.09% 

LPM … … 0.38 … 90.43% 90.00% 90.73% 86.61% 93.15% 

LPM … … … 0.42 90.87% 88.04% 92.76% 89.01% 92.09% 

Logit 0.50 … … … 92.87% 88.70% 95.65% 93.15% 92.70% 

Logit … 0.44 … … 93.30% 90.87% 94.93% 92.27% 93.97% 

Logit … … 0.43 … 93.22% 91.09% 94.64% 91.89% 94.09% 

Logit … … … 0.44 93.30% 90.87% 94.93% 92.27% 93.97% 

GBM 0.50 … … … 95.22% 92.83% 96.81% 95.10% 95.29% 

GBM … 0.52 … … 95.30% 92.61% 97.10% 95.52% 95.17% 

GBM … … 0.38 … 95.04% 94.13% 95.65% 93.52% 96.07% 

GBM … … … 0.40 95.13% 93.91% 95.94% 93.91% 95.94% 

RF 0.50 … … … 94.96% 91.96% 96.96% 95.27% 94.76% 

RF … 0.55 … … 95.30% 91.74% 97.68% 96.35% 94.66% 

RF … … 0.34 … 94.87% 95.43% 94.49% 92.03% 96.88% 

RF … … … 0.34 94.87% 95.43% 94.49% 92.03% 96.88% 

 

 Similar to before, the accuracy measures given in Table 8 are an optimistically biased 

estimate of the generalization accuracy of each model since selection of the random forest model 

was chosen based on its validation set performance. To get a measure of the generalization 

accuracy, we use our random forest model with a cutoff of 0.34 to predict the spam status of our 

test set observations, and then calculate our accuracy measures for these test set predictions. 

Table 9 displays our results. 

 

Table 9:  Random Forest Accuracy using Test Set Predictions 

Accuracy 

Total TPR TNR PPV NPV 

93.74%  94.55%  93.25%   89.66%  96.51% 

 

  As before, we view Table 9 measures of accuracy as conservative estimates of the 

generalization accuracy since they are based on a model trained on 50% of the available data. 

Therefore, we measure this error using the OOB error of the random forest model trained on all 

the UMETRICS data, noting that this measure of error is likely optimistically biased. We 

informally view our accuracy measures in Table 9 and Table 10 as a lower bound estimate and 

upper bound estimate of the generalization error, respectively.  
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Table 10:  Random Forest Accuracy using OOB Predictions  

                from Random Forest Trained on Full Data 

Accuracy 

Total TPR TNR PPV NPV 

95.02% 96.47%  94.08%     91.38%  97.62% 

 

  The results in Tables 9 and 10 are similar to those in Tables 5 and 6, respectively, but 

there are some differences emanating from the fact that the Youden cutoff obtained when using 

the OOB observations (0.43) is higher than the Youden cutoff obtained when using the 

validation set observations (0.34), leading now to a higher TPR and lower PPV relative to the 

final model obtained in the last section. Another difference is that the test dataset used to produce 

Table 9 results was one-half the size of the test set used for Table 5 because, unlike before, we 

had to reserve some data to form a validation set. 

  Overall, random forests compare favorably to the other prediction models considered in 

this section. Random forests performed better than the LPM and logit model and about the same 

as boosted trees. The advantage of random forests over boosted trees is that they are considerably 

easier and less computationally intensive to tune. We may be able to obtain a boosted tree model 

that would marginally outperform random forests if we tune over more tuning parameter values, 

but given the high performance of random forests already, the expected return to doing so is 

small. 

  While we are unable to report our exact postdoc prediction results as they are pending 

Census disclosure, we discuss our general findings here: first, as demonstrated using the spam 

data, random forests and boosted trees perform similarly, and both these models significantly 

improve over the LPM and logit model. Overall, the random forest algorithm predicts postdoc 

status extraordinarily well in terms of accuracy, true positive rate, true negative rate, and area 

under the ROC curve, with age and earnings being two of the most important predictors of 

postdoc status.  

  In the past, we utilized a simpler approach to predicting postdoc status using random 

forests, and had these results disclosed. Prediction is based on a reduced set of variables 

including age, sex, quarterly earnings, and whether the individual is employed in a university.  

The results from this random forest model are reported in Table 11. Despite predictions being 

based on a small number of predictors, random forests performed reasonably well in terms of 

FPR (“Type I”) and FNR (“Type II”). Our improved method and set of predictors builds on these 

results. 
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Table 11: Postdoc Prediction Using a Reduced Set of Predictors 

 

 

7. Conclusion 

 In this paper, we detailed our construction of a linked employer-employee longitudinal 

dataset of the doctoral workforce that enables researchers to analyze the labor market outcomes 

of STEM PhD graduates and postdocs. This dataset contains demographic information such as 

age, race, and sex for each individual from the annual ACS files, as well as key quarterly 

economic information from the LEHD about where each individual works, how much they earn, 

and how their careers develop over time. By matching a new university-based administrative 

dataset, UMETRICS, to our ACS-LEHD Doctorate Panel, we were able to develop a machine 

learning procedure to predict, at a high degree of accuracy, the postdoc status of individuals for 

whom true postdoc status is unknown. Since the actual results of our postdoc prediction exercise 

are pending Census disclosure, we utilized a publicly available dataset of spam emails to 

demonstrate our methods. In doing so, we rigorously compared the prediction performance of 

our preferred model, random forests, to other predictive models including a linear probability 

model (LPM), logit, and boosted trees, another popular machine learning model, and found that 

random forests outperformed the standard approaches and achieved performance comparable to 

boosted trees, with the advantage of being more computationally efficient. Our methods are 

sufficiently general to be applied in other research contexts, and we view our method as a way to 

reliably augment the research capabilities of existing big datasets cheaply.  

  The next step we would like to accomplish is to validate our postdoc prediction algorithm 

by comparing the characteristics (e.g. age, sex, race, foreign-born status, salary, etc.) of our 

predicted postdocs to the characteristics of postdocs found in the Survey of Earned Doctorates 

(SED), Survey of Doctorate Recipients (SDR), and the Survey of Graduate Students and 

Postdoctorates in Science and Engineering (GSS). The SED contains a census of individuals 

obtaining PhDs through a US institution and contains information on whether a new doctorate is 

pursuing a postdoc. The GSS is a census that covers all US academic institutions granting 

doctorates in STEM fields, from which we can obtain the number of postdocs in each university 

by different demographic characteristics. An important distinction is that individuals who 

obtained a PhD outside the US and then took a postdoc position at a US academic institution will 

be counted in the GSS, but will not be in the SED. Postdocs in UMETRICS data may have 

obtained their PhD in the U.S. or abroad, so it is important to compare their characteristics with 

postdocs found both in SED and GSS. The SDR is longitudinal and contains individual-level 
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information on STEM PhDs including salary for job in year of survey and, starting in 2010, 

salary for the first job after obtaining a PhD. Thus, we can compare the earning trajectory of our 

predicted postdocs with those in the SDR. If characteristics of our predicted postdocs match 

those in the SED, SDR, and GSS reasonably well, we can be even more confident in our methods 

used for postdoc prediction.  

  We would also like to apply our method to predicting spells in doctoral programs for 

individuals in the ACS-LEHD Doctorate Panel. A future goal is to have Proquest linked to the 

LEHD, which would enable us to identify individuals in the LEHD whom have doctorates and 

when they graduate and from what institution. This would also be useful for our postdoc 

prediction exercise as date of graduation and university attended could be a useful predictor. 

  Lastly, once all data construction is complete, we will begin using the dataset to study a 

wide-range of pertinent topics including: (1) the returns to education for STEM PhDs and 

postdocs, and how these differ by demographics, (2)  the determinants of STEM labor demand, 

including an assessment of the complementarity between STEM workers and firm R&D activity, 

and (3) how the labor mobility of STEM doctorates impacts R&D spillovers, and how the 

earnings of STEM doctorates depend on measures of their past R&D exposure.  
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Data Appendix: Merging UMETRICS to the ACS-LEHD Doctorate Panel 

  Here, we outline the steps shown in Figure 3 used to merge the UMETRICS Employee 

Transactions File (ETF) to our ACSD-LEHD Doctorate panel.  

  The first step in preparing UMETRICS ETF data for merging into our ACS-LEHD data 

is to obtain the PIKs for each ETF observation via a merge with the UMETRICS employeeid-

PIK Crosswalk available in the Census FSRDC. After the merge, we keep only observations for 

which there is a PIK available (i.e. “PIK’d” observations). We subsequently reformat the 

resulting ETF file into a quarterly dataset where the unit of observation is PIK-institutionid-year 

quarter since an individual may be employed at multiple IRIS member universities within the 

same quarter. We also code a postdoc indicator variable for each observation in this dataset 

which equals 1 if a person is ever employed as a “Post Graduate Researcher” in the given 

quarter. 

  In order to merge the UMETRICS ETF PIK’d observations with our ACS-LEHD 

Doctorate Panel by PIK-institutionid-year-quarter, we must first bring the institutionid variable 

into the ACS-LEHD Doctorate Panel. Therefore, we construct an Institutionid-SEIN Crosswalk 

by merging together our LEHD Panel with a version of the UMETRICS ETF “PIK’d” 

observations that is unique on PIK-year-quarter.40 After the merge, we keep observations 

associated with either “Colleges, Universities, and Professional schools” (NAICS=611310) or 

“General Medical and Surgical Hospitals” (NAICS=622110). For each institutionid, we keep any 

SEIN that is associated with at least 100 observations and make our institutionid-SEIN 

Crosswalk unique on SEIN.  We then merge the institutionid-SEIN Crosswalk with our ACS-

LEHD Doctorate Panel to bring the institutionid variable into our ACS-LEHD Doctorate Panel. 

At this stage, we then merge the ACS-LEHD Panel with the UMETRICS ETF “PIK’d” 

observations by PIK-institutionid-year-quarter to create an ACS-LEHD Doctorate panel with the 

UMETRICS subset of this data being identified and containing an indicator variable for postdoc 

status. UMETRICS mostly contains information on individuals employed in NAICS = 611310 or 

NAICS = 62210 industries. Therefore, we remove observations from our ACS-LEHD Doctorate 

Panel with UMETRICS that have different NAICS codes to improve the representativeness of 

our UMETRICS subsample which will be used to train our random forest model used to predict 

the postdoc status of the non-UMETRICS subsample. This leads us to our prediction sample 

“ACS-LEHD Academic Doctorate Panel with UMETRICS” which we make unique on PIK-

year-quarter.  

 

 

 

                                                             
40 This drops observations where a single person is employed at multiple IRIS member universities within the same 

quarter, but this should have a negligible effect in construction of the institutionid-SEIN crosswalk. The version of 

UMETRICS ETF “PIK’d” observations that we use later when directly merging with our ACS-LEHD Panel is 

unique on PIK-institutionid-year-quarter.  
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Appendix Tables 

 

Table A.1: Variables included in ACS-LEHD Academic Doctoral Panel with 

UMETRICS 

Variable Definition 

postdoc1 
If occupational class = "Post Graduate Researcher", then postdoc==1; 

otherwise, postdoc==0. 

Year Year between 2002-2014 

Quarter Quarter between 1-4 

age2 Year - birth year 

male2 If male, then male==1; otherwise, male==0 

white2 If white, then white==1; otherwise, white==0 

black2 If black, then black==1; otherwise, black==0 

native2 If Native American, then native==1; otherwise, native==0 

asian2 If Asian, then asian==1; otherwise, asian==0 

hispanic2 If Hispanic, then Hispanic==1; otherwise, Hispanic==0 

other2 If other race, then other==1; otherwise, other==0 

race_miss2 If race missing, then race_miss==1; otherwise, race_miss==0 

stateborn2 Born in US State 

terrborn2 Born in US Territory 

foreign2 Foreign born 

homelang2 Speaks another language at home 

eng2 
English speaking ability: 1= Very Well, 2 = Well, 3 = Not well, 4 = Not at 

all. If surveyed in multiple ACS years, uses worst reported language ability 

military2 Ever serve in military? 

disable2 Report a disability? 

ind_12 industry code = [awaiting disclosure] 

ind_22 industry code = [awaiting disclosure] 

ind_32 industry code = [awaiting disclosure] 

ind_42 industry code = [awaiting disclosure] 

ind_52 industry code = [awaiting disclosure] 
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ind_miss2 industry code missing 

occ_12 occupation code = [awaiting disclosure] 

occ_22 occupation code = [awaiting disclosure] 

occ_32 occupation code = [ awaiting disclosure] 

occ_42 occupation code = [awaiting disclosure] 

occ_52 occupation code = [awaiting disclosure] 

occ_miss2 occupation code missing 

univ3 
Employed in a NAICS = 611310 job (Colleges, University, and 

professional Schools) during quarter 

hosp3 
Employed in a NAICS = 622110 job (General Medical and Surgical 

Hospitals) during quarter 

univ_earn3 Quarterly earnings across all NAICS = 611310 jobs  

hosp_earn3 Quarterly earnings across all NAICS = 622110 jobs  

totearn3 Quarterly earnings across all jobs 

jobs3 Total number of jobs during quarter as counted by number of SEINs 

totseinunits3 Total number of jobs during quarter as counted by number of SEINUNITs 

univ_jobs3 Total number of NAICS = 611310 jobs during quarter (SEIN) 

hosp_jobs3 Total number of NAICS = 622110 jobs during quarter (SEIN) 

univ_qtrs_max3 maximum # of quarters spent in a single SEIN where NAICS = 611310 

univ_qtrs_min3 minimum # of quarters spent in a single SEIN where NAICS = 611310 

hosp_qtrs_max3 maximum # of quarters spent in a single SEIN where NAICS = 622110 

hosp_qtrs_min3 minimum # of quarters spent in a single SEIN where NAICS = 622110 

job_qtrs_max3 maximum # of quarters spent in a single SEIN 

job_qtrs_min3 minimum # of quarters spent in a single SEIN 

  
Notes: Superscripts indicate data sources used to create variable: 1 = UMETRICS, 2 = ACS, 3 

= LEHD. The variable “postdoc” is only available for the UMETRICS subsets of our ACS-

LEHD prediction sample 

 


